Stochastic Controls: Hamiltonian Systems and HJB Equations (Stochastic Modelling and Applied Probability)


Product Description
The maximum principle and dynamic programming are the two most commonly used approaches in solving optimal control problems. These approaches have been developed independently. The theme of this book is to unify these two approaches, and to demonstrate that the viscosity solution theory provides the framework to unify them.Stochastic Controls: Hamiltonian Systems and HJB Equations (Stochastic Modelling and Applied Probability) Review
This book covers general stochastic control more thoroughly than any other book I could find. This is *not* a book on numerical methods. It is also not on the cases which yield closed-form solutions: there is a chapter on LQG problems, but for the most part, this book focuses on the general theory of stochastic controls -- which are not the easiest things to solve in general, as you may know. The book handles only diffusion processes with perfect knowledge of the past and present (natural filtration). If these sound like what you want, I doubt there's a more thorough treatment.It starts with a chapter on preliminaries of prob. spaces and stoch. processes and the Ito integral. After that, the book briefly addresses deterministic problems in order to compare solution methods to the stoch. approaches. It approaches the problems using a stochastic maximum principle and a stochastic Hamiltonian system, and also from a dynamic programming point of view using HJB equations. The authors attempt to show the relationship between the two approaches.This book is technically rigorous. Though it claims to be self-contained, the reader should certainly be familiar with functional analysis and stochastic processes.The authors try to keep the solutions as general as possible, handling non-smooth cases as well as smooth ones. This is fine, except that they don't emphasize well enough (I thought), for instance, that the solutions are much simpler when functions are well behaved on convex bodies (it's mentioned as a note on p. 120), or when diffusions are not dependent on controls, and such.Because of this tendency to present one solution which will handle any case, it could sometimes be difficult to figure out what all the terms are. In the end, it all works out. Each chapter ends with a few pages of "historical background": who did what piece of the theory when, with an excellent list of references. (I found the originals useful to help explain things, on occasion, especially to see simpler ways to do simpler cases)Altogether, a very thorough piece on general solutions to stochastic control! I was quite impressed. Help other customers find the most helpful reviews Was this review helpful to you?�Yes No Report abuse | PermalinkComment CommentMost of the consumer Reviews tell that the "Stochastic Controls: Hamiltonian Systems and HJB Equations (Stochastic Modelling and Applied Probability)" are high quality item. You can read each testimony from consumers to find out cons and pros from Stochastic Controls: Hamiltonian Systems and HJB Equations (Stochastic Modelling and Applied Probability) ...

No comments:
Post a Comment